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Abstract 
 

For small image registration, feature-based approaches are likely to fail as feature detectors 

cannot detect enough feature points from low-resolution images. The classic FFT approach’s 

prediction accuracy is high, but the registration time can be relatively long, about several 

seconds to register one image pair. To achieve real-time and high-precision rigid registration 

for small images, we apply deep neural networks for supervised rigid transformation 

prediction, which directly predicts the transformation parameters. We train deep registration 

models with rigidly transformed CIFAR-10 images and STL-10 images, and evaluate the 

generalization ability of deep registration models with transformed CIFAR-10 images, STL-

10 images, and randomly generated images. Experimental results show that the deep 

registration models we propose can achieve comparable accuracy to the classic FFT approach 

for small CIFAR-10 images (32×32) and our LSTM registration model takes less than 1ms to 

register one pair of images. For moderate size STL-10 images (96×96), FFT significantly 

outperforms deep registration models in terms of accuracy but is also considerably slower. Our 

results suggest that deep registration models have competitive advantages over conventional 

approaches, at least for small images. 

 

 

Keywords: Rigid Registration, Self-Supervised Learning, Small Image, LSTM, 

Homography Estimation 
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1. Introduction 

Image registration [1] is a fundamental computer vision [2, 3] task and is widely used in 

remote sensing [4, 5], 3D reconstruction [6], SLAM [7, 8] and medical image processing [9, 

10]. For example, registered image pairs across different times or subjects can be used for 

diagnostic guidance or minimally invasive surgery [11, 12]. 

Spatial transformations can be divided into rigid transformation, similarity transformation, 

affine transformation, and projection transformation based on the degree of freedom of the 

homography matrix. Furthermore, image registration is to obtain the spatial transformation 

which aligns the image pairs best. 

Feature-based registration approaches are commonly used and robust to noise and distortion, 

such as SIFT [13], SURF [14], ORB [15], and AKAZE [16] algorithms, which can obtain 

homography matrix through feature point detection [17], feature description [18], feature 

matching [19], and image warping procedure. However, these approaches fail to register small 

images with a high probability due to the insufficient number of feature points detected for 

further estimation. Classic FFT [20-22] registration approach can achieve high registration 

accuracy with the normalized cross-correlation [23] metrics. However, it takes several seconds 

for the classic FFT approach to register one image pair. The FFT approach’s registration 

accuracy decreases if the images’ resolution or the number of high-frequency components 

decreases. 

In this paper, we focus on real-time rigid registration for small images, where deep 

regression networks predict the registration parameters in a single forward propagation pass 

based on the whole image. To address the lack of datasets with ground truth, we adopt the self-

supervised learning principle [24] and train deep regression networks with rigidly transformed 

CIFAR-10 [25] images and STL-10 [26] images. We evaluate different network architectures’ 

generalization ability with transformed test images of the CIFAR-10 and STL-10 dataset. 

Moreover, we also generate random patches to access different approaches. We propose deep 

regression networks to achieve comparable accuracy to the classic FFT approach for small 

images while deep networks’ registration time decreases significantly. 

1.1 Related Work 

With the development of deep learning, especially in the past five years, many learning-based 

approaches [27] have been introduced to the registration task. 

Nguyen et al. [28] proposed an unsupervised homography estimation model for a robotic 

system. They used the 4-point parameterization and developed a layer to obtain the 3×3 

homography matrix. They trained a convolutional neural network (CNN) using an L1 pixel-

wise photometric loss function, different from the parameter-based loss function we used. 

Similarly, Rocco et al. [29] proposed a CNN for affine, homography, and thin-plate spline 

transformation [30]. They used the VGG-16 [31] network for feature extraction and defined 

the loss function based on the discrepancy between the corresponding grid points. They 

consider their approach as a particular case of self-supervised learning [24]. Chen et al. [32] 

proposed a multimodal image representation model MIRnet for slice-to-volume registration 

based on the self-learning strategy. They defined a specific loss function to make the paired 

outputs similar and retain the originals’ edge information. The MIRnet is optimized in an 

unsupervised manner. 

Despite the lack of datasets with ground truth, several researchers managed to train deep 

regression networks to predict the rigid registration parameters directly. Miao et al. [33] 

proposed a CNN regression approach to register a 3D CT or CBCT image with a 2D X-ray 
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image. They used a patch-based registration method, different from the strategy based on the 

whole image we adopt. Sloan et al. [34] trained a fully convolutional neural network to register 

2D to 2D images of the size 256×256. However, they allowed translation pixels and rotation 

angles with limited ranges of ±30 pixels and ±15 degrees. Salehi et al. [35] proposed a CNN-

based registration model consisting of feature extractors and regression heads for 2D or 3D to 

3D registration, predicting the translation and rotation parameters generated randomly. They 

compare geodesic loss with mean square error loss for training CNN architectures. At the same 

time, we use mean absolute error for translation pixels and rotation angles separately for 2D 

to 2D small image registration. 

Similar to the above works, our registration models predict the rigid transformation 

parameters directly. However, the above works were proposed for medical image registration 

where the images are typically large, while our interest is to register small images such as 

CIFAR-10 images with 32×32 resolution. Moreover, the above works are mainly based on 

CNNs, while we introduce LSTM [36] architecture to 2D rigid registration task for 

straightforward prediction or used as a regression head. 

1.2 Our Contributions 

We propose different CNN and LSTM network architectures for small image rigid registration. 

We adopt the self-supervised learning principle and generate synthetic data by randomly 

translating and rotating images from the CIFAR-10 [25] and STL-10 [26] datasets. 

We test our regression networks with 32×32 resolution images, including CIFAR-10 

images and random patches, and 96×96 resolution images, including STL-10 images and 

random patches. For all these images, feature-based approaches fail to register image pairs 

with very high probability, and the prediction is inaccurate in rarely successful cases. 

Compared with the classic FFT approach, which has high accuracy and very long registration 

time, our deep registration architectures reduce the average registration time up to 42 folds and 

achieve comparable registration accuracy for smaller images (32×32) even though the FFT 

approach is still significantly more accurate for large images (96×96). This work suggests a 

novel and better way to conduct efficient rigid registration for small image patches. 

2. Methods 

2.1 Problem Setup 

A rigid 2D transformation with translation and rotation can be represented by a homography 

matrix with three degrees of freedom, as below: 

(
𝑥′

𝑦′

1

) = (
cos 𝜃 − sin 𝜃 𝑡𝑥

sin 𝜃 cos 𝜃 ty

0 0 1

) (
𝑥
𝑦
1

)                                         (1) 

where (𝑥, 𝑦) and (𝑥′, 𝑦′) are the coordinates of the same point of the image in different 

coordinate systems, 𝜃 denotes the rotation angle of rigid transformation, and (𝑡𝑥, ty) denotes 

the amount of translation in (𝑥, 𝑦) direction. The goal of this work is to estimate 𝜃, 𝑡𝑥  and 𝑡𝑦 

from a pair of input images. 
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2.2 Registration Based on LSTM 

We flatten the image pairs to be registered into two one-dimensional vectors, the size of which 

is equal to the input size of LSTM. Moreover, we treat the two vectors as two time series of 

LSTM. A fully connected layer is connected behind the LSTM architecture as the regression 

head, which has three outputs for three rigid registration parameters. Fig. 1 shows the 

schematic diagram of registration by the LSTM model. 

 
Fig. 1.  Schematic diagram of registration by the LSTM model 

2.3 Registration Based on CNN Extractors 

We use CNN architectures with 3-channel input as extractors. The two images to be registered 

are fed into the same CNN extractors, obtaining two one-dimensional vectors. A fully 

connected layer and an LSTM architecture are adopted as the regression head. For a fully 

connected layer regression head, the two vectors obtained from CNN extractors will be 

connected into a one-dimensional vector, later fed into the regression head. For the LSTM 

regression head, we treat the two vectors obtained from CNN extractors as two different time 

series. Moreover, one fully connected layer behind the LSTM has three outputs for three rigid 

registration parameters. Fig. 2 shows the schematic diagram of registration by the CNN 

extractor model. 

 
Fig. 2.  Schematic diagram of registration by the CNN extractor model 

2.4 Loss Function 

To evaluate the registration model’s performance in both translation and rotation aspects, we 

calculate the errors of the amount of translation and the angle of rotation separately. For 

translation error, we construct the ground truth vector of translation 𝑣𝑔𝑡𝑡 = (𝑡𝑥 , 𝑡𝑦) and the 

prediction result vector of translation 𝑣𝑝𝑡 = (𝑝1, 𝑝2). The test loss of translation is the mean 

absolute error between the first two predictions of the neural network and the ground truth 
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vector we constructed. We calculate the test loss of translation with the formula as follows: 

                                           𝐿𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛 =
1

𝑛
∑ |𝑡𝑥𝑖

− 𝑝1𝑖
|

𝑛

𝑖=1
+ |𝑡𝑦𝑖

− 𝑝2𝑖
|                          (2) 

where 𝑛 is the number of the test samples, 𝑡𝑥, 𝑡𝑦 denotes the amount of translation in x and y 

direction, 𝑝1, 𝑝2 represents the first and second dimension of the neural network’s predictions, 

and the subscript 𝑖 indicates the corresponding attributes of the 𝑖-th sample. 

Similarly, we construct the ground truth vector of rotation 𝑣𝑔𝑡𝑟 = (𝜃) and the prediction 

result vector of rotation 𝑣𝑝𝑟 = (𝑝3). We calculate the test loss of rotation as follows: 

                                                         𝐿𝑀𝐴𝐸𝑖
≡ |𝜃𝑖 − 𝑝3𝑖

| 𝑚𝑜𝑑 360                                        (3) 

              𝐿𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛 =
1
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where 𝑛 is the number of the test samples, 𝜃 denotes the angle of rotation, 𝑝3 represents the 

third dimension of the predictions of the neural network, 𝐼(𝑥) is an indicator function, and the 

subscript 𝑖 indicates the corresponding attributes of the 𝑖-th sample. The overall training loss 

is given by 

 

𝐿𝑡𝑟𝑎𝑖𝑛𝑖𝑛𝑔 =
1

𝑛
∑ 𝜆𝐿𝑡𝑟𝑎𝑛𝑠𝑙𝑎𝑡𝑖𝑜𝑛

𝑛
𝑖=1 + 𝐿𝑟𝑜𝑡𝑎𝑡𝑖𝑜𝑛                      (5) 

where 𝑛 is the number of training samples, and 𝜆 is a hyperparameter trading-off rotation loss 

with translation loss. 

3. Experiments 

We conduct all our deep learning experiments using the PyTorch [37] framework, with the 

cuDNN acceleration. The GPU we use is the Nvidia Geforce GTX TITAN X. The batch size 

is one, the hyperparameter 𝝀 is set to 17, and we use Adam [38] to optimize throughout the 

training procedure. 

3.1 Datasets 

The CIFAR-10 dataset [25] consists of 50000 training samples and 10,000 test samples. The 

resolution of CIFAR-10 images is 32×32. The STL-10 [26] dataset has 5,000 training samples, 

8,000 test samples, and 100,000 unlabeled samples, the resolution of which is 96×96. 

Moreover, we also generate random patches with the same resolution as the CIFAR-10 image 

and STL-10 image separately. 

We adopt the self-supervised learning [24] principle and generate synthetic data by 

randomly translating and rotating the images mentioned above. Qualitative results of the 

LSTM registration model on the CIFAR-10 dataset are shown in Fig. 3. 
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Fig. 3.  Qualitative results of the LSTM registration model on the CIFAR-10 dataset 

Each row shows one test sample from the CIFAR-10 dataset. The left column shows the 

original image, the middle column shows the synthetic image we generate by randomly 

translating and rotating the original image, and the right column shows the aligned image 

generated from the original image with the estimation parameters obtained by the LSTM 

registration model. 

3.2 Network Architectures 

3.2.1 LSTM Registration Architecture 

The proposed LSTM registration model has an input layer, three LSTM hidden layers, and one 

fully connected layer at the end. The three LSTM hidden layers are used for feature extraction, 

and the last fully connected layer is used as the regression head. 

The LSTM registration model’s input size is 3,072, equal to the vectorized size of images 

of the CIFAR-10 dataset. For the small images of 32×32 resolution, the original image and the 

synthetic image are vectorized and fed into the input layer in two steps. Moreover, the 96×96 

resolution images are down-sampled into 32×32 resolution before vectorization. The middle 

three layers have 3,000 LSTM hidden units in each layer. The three LSTM hidden layers 

provide 3,000 features for the regression head. And the last fully connected one layer has three 

units as outputs (corresponding to the rigid transforms’ three degrees of freedom). We take the 

first as the translation pixels in the x-direction, the second as the translation pixels in the y-

direction, and the third as the rotation angle. 
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3.2.2 CNN-Extractor Registration Architectures 

The CNN-extractor registration network comprises the ResNeXt-50_32x4d [39] architecture 

as the feature extractor and the regression head, which is either one fully connected layer or 

the LSTM registration network we proposed above. All these architectures have been 

pretrained on the ImageNet [40] dataset.  

We replace the final layer of the ResNeXt-50_32x4d network with a 3,072-output fully 

connected layer. The original image and the synthetic image are fed into the feature extractor 

sharing the weights separately, each for 3,072 features. The 32×32 resolution images are up-

sampled into 64×64 resolution before fed into the feature extractor. We concatenate the 

2×3072 features into a one-dimensional vector of size 6,144 before fed into a 3-output layer 

for the fully connected regression head, as described in Section 2. Moreover, the LSTM 

regression head has the same architecture as the LSTM registration architecture we proposed 

above. For the LSTM regression head, we treat the 2×3072 features as two steps, which are 

fed into three LSTM hidden layers for 3,000 new features. The 3,000 features are fed into the 

last fully connected layer which has three outputs as the estimation results. 

3.3 Comparison with FFT and Feature-based Approaches 

To compare the prediction accuracy and registration time of deep registration models, we 

implement the classic FFT approach [20, 22] and feature-based approaches. Since the FFT 

approach can only register images with pure translation, we rotate one image for each degree 

and register the other. The feature detectors we use include SIFT [13], SURF [14], ORB [15], 

and AKAZE [16] algorithms. We use the k-nearest neighbor [41] to match the detected 

keypoints and use RANSAC [42] algorithm to exclude outliers and obtain the homography 

matrix. 

4. Experimental Results and Discussion 

4.1 Evaluation of Small Images 

We conduct experiments to train the deep regression networks with rigidly transformed 

CIFAR-10 images and test different approaches with rigidly transformed random patches of 

32×32 resolution and CIFAR-10 test images under more detailed translation and rotation 

conditions. The prediction errors and registration times of different approaches for CIFAR-10 

images and random patches are shown in Table 1 and Table 2, respectively. The bracket 

values next to the feature-based methods indicate the rate of failure where insufficient 

keypoints are detected. Methods that ultimately fail to register the input are filled with N.A. 

The results are mean absolute values and a standard deviation of prediction errors. The 

translation error is measured in pixels, the rotation error is measured in degrees, and the 

registration time is measured in seconds. 
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Table 1. The prediction errors and registration time for transformed CIFAR-10 images 

Model Translation（pixels） Rotation（degrees） Time（s） 

AKAZE (1) N.A.  N.A. N.A. 

ORB (1) N.A.  N.A. N.A. 

SURF (1) N.A.  N.A. N.A. 

SIFT (0.9505) 13.3594±6.2321  62.0331±52.7100 0.0093±0.0064 

FFT  1.4542±0.6620  7.9713±5.1973 2.4132±0.0896 

ResNeXt-50+FC  1.0182±0.8282  6.6140±7.3644 0.0536±0.0090 

ResNeXt-50+LSTM  0.8328±0.7147  5.6407±6.1125 0.0546±0.0083 

LSTM  0.6641±0.4848  7.8624±8.1080 0.0007±0.0003 

Table 2. The prediction errors and registration time for transformed random 32 × 32 images 

Model Translation（pixels） Rotation（degrees） Time（s） 

AKAZE (1)   N.A.   N.A.   N.A. 

ORB (1)   N.A.   N.A.   N.A. 

SURF (1) N.A. N.A. N.A. 

SIFT (1) N.A. N.A. N.A. 

FFT 0.5004±0.0649 0.3596±0.1117 2.2415±0.1396 

ResNeXt-50+FC 0.9879±0.9742 6.3044±7.7589 0.0502±0.0080 

ResNeXt-50+LSTM 0.8320±1.0346 5.6148±7.1531 0.0528±0.0084 

LSTM 1.0474±1.5365 12.1091±17.8267 0.0007±0.0003 

The detailed registration results for transformed CIFAR-10 images of different registration 

models are shown in Fig. 4-7. 

 
Fig. 4.  The scatter plots of predicted results vs. ground truth of transformation parameters by LSTM 

registration model for transformed CIFAR-10 images 

 

 
Fig. 5.  The scatter plots of predicted results vs. ground truth of transformation parameters by 

ResNeXt-50 extractor with LSTM regression head architecture for transformed CIFAR-10 images 
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Fig. 6.  The scatter plots of predicted results vs. ground truth of transformation parameters by 

ResNeXt-50 extractor with FC regression head architecture for transformed CIFAR-10 images 

 
Fig. 7.  The scatter plots of predicted results vs. ground truth of transformation parameters by classic 

FFT approach for transformed CIFAR-10 images 

Fig. 4-7 shows the detailed registration results of CIFAR-10 images for translation pixels in 

x,y-directions and rotation angles. The errors are measured based on deviation. The 

registration results are more accurate if the points fit the line of y=x better. Note that the 

rotation error is calculated with the complementation. For example, if the ground truth of 

rotation angle is -180° and the prediction result is 180°, the rotation error will be 0°. The 

FFT’s prediction results are discrete values. For the rotation estimation, the ResNeXt-50 

extractor with the LSTM regression head network performs best. Moreover, the LSTM 

registration model performs best for the translation estimation. 

We test how many keypoints feature-based approaches can detect from small images; the 

results are shown in Table 3. The results are mean absolute values and a standard deviation of 

keypoint numbers. 

Table 3. The number of keypoints that feature-based approaches detected 

Model CIFAR-10 images Random 32×32 images 

AKAZE 0±0 0±0 

ORB 0±0 0±0 

SURF 0.0116±0.1071 0.0023±0.0481 

SIFT 0.9010±1.5595 0.0764±0.2988 

AKAZE, ORB, and SURF cannot detect sufficient feature points from all 32×32 resolution 

test images. SIFT only detects sufficient feature points under a few cases for the CIFAR-10 

test images. For rare successful cases, the prediction errors of SIFT are unacceptably large. 

The classic FFT approach’s prediction accuracy is pretty good, especially for random 

patches of 32×32 resolution, which have more high-frequency components. It takes more than 

2 seconds for the classic FFT approach to register one image pair. However, the classic FFT 

approach’s registration accuracy is more robust than deep models under different evaluation 

conditions. 



KSII TRANSACTIONS ON INTERNET AND INFORMATION SYSTEMS VOL. 15, NO. 1, January 2021                             189 

 

The proposed deep network architectures can achieve comparable accuracy to the classic 

FFT approach for CIFAR-10 images. The ResNeXt-50 extractor model’s registration time is 

about 54ms, 2.24% of that of the FFT approach. Moreover, it takes 0.7ms for the LSTM 

registration model to register one image pair, which is 0.29% of the classic FFT approach. The 

deep neural networks perform similarly under different translation and rotation conditions. If 

the translation pixels get too large, where the registration becomes impossible, the prediction 

error will be much higher. For random patches of 32 × 32 resolution, there is little change of 

ResNeXt-50 extractor model in registration accuracy and time. 

4.2 Evaluation of Large Images 

We train our deep regression networks with rigidly transformed STL-10 images to evaluate 

these approaches’ registration performance for high-resolution images. Moreover, we test 

feature-based approaches, the classic FFT approach, and deep registration models with rigidly 

transformed STL-10 images and random patches of 96×96 resolution. The prediction errors 

and registration times of different approaches for CIFAR-10 images and random patches are 

shown in Table 4 and Table 5, respectively. The brackets’ value next to the feature-based 

methods indicates the rate of failure where insufficient keypoints are detected. Methods that 

ultimately fail to register the input are filled with N.A. The results are mean absolute values 

and a standard deviation of prediction errors. The translation error is measured in pixels, the 

rotation error is measured in degrees, and the registration time is measured in seconds. 

Table 4. The prediction errors and registration time for transformed STL-10 images 

Model Translation（pixels） Rotation（degrees） Time（s） 

AKAZE (0.9948)  49.5539±18.8692  47.8793±45.2319 0.0090±0.0024 

ORB (0.9466)  40.2261±16.9984  74.2664±58.4848 0.0128±0.0412 

SURF (0.8438)  31.1103±18.0714  72.2730±60.4200 0.0106±0.0043 

SIFT (0.6510)  29.6221±17.5444  67.7139±62.8882 0.0175±0.0051 

FFT  0.8751±1.1441  1.0525±2.7068 11.3075±1.1275 

ResNeXt-50+FC  3.0326±2.6558  6.2268±7.2041 0.0491±0.0083 

ResNeXt-50+LSTM  2.7797±2.7902  6.9497±5.7735 0.0539±0.0081 

LSTM  1.7943±1.0922  5.9582±5.7487 0.0009±0.0003 

Table 5. The prediction errors and registration time for transformed random 96 × 96 images 

Model Translation（pixels） Rotation（degrees） Time（s） 

AKAZE (1)  N.A.  N.A. N.A. 

ORB (0.9531)  36.4939±20.3236  72.7067±60.6450 0.0119±0.0190 

SURF (0.9193)  29.0270±14.4547  76.0592±56.8022 0.0153±0.0055 

SIFT (0.7969)  31.3871±19.4016  56.7080±59.4889 0.0190±0.0059 

FFT  0.4982±0.0618  0.2494±0.0448 11.8021±1.8278 

ResNeXt-50+FC  2.4061±2.7931  5.3728±7.3070 0.0525±0.0084 

ResNeXt-50+LSTM  2.3763±2.8637  6.0183±5.4018 0.0545±0.0080 

LSTM  2.4931±3.6001  7.8609±11.2270 0.0009±0.0003 

The detailed registration results for transformed STL-10 images of different registration 

models are shown in Fig. 8-11. 
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Fig. 8.  The scatter plots of predicted results vs. ground truth of transformation parameters by LSTM 

registration model for transformed STL-10 images 

 
Fig. 9.  The scatter plots of predicted results vs. ground truth of transformation parameters by 

ResNeXt-50 extractor with LSTM regression head architecture for transformed STL-10 images 

 
Fig. 10.  The scatter plots of predicted results vs. ground truth of transformation parameters by 

ResNeXt-50 extractor with FC regression head architecture for transformed STL-10 images 

 
Fig. 11.  The scatter plots of predicted results vs. ground truth of transformation parameters by 

classic FFT approach for transformed STL-10 images 

Fig. 8-11 shows the detailed registration results of STL-10 images for translation pixels in 

x,y directions and rotation angles. The errors are measured based on deviation. The registration 

results are more accurate if the points fit the line of y=x better. Note that the rotation error is 

calculated with the complementation. For example, if the ground truth of rotation angle is -

180° and the prediction result is 180°, the rotation error will be 0°. The FFT’s prediction 

results are discrete values. The FFT approach outperforms the other approaches obviously for 
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STL-10 images. 

We test how many keypoints feature-based approaches can detect from large images; the 

results are shown in Table 6. The results are mean absolute values and a standard deviation of 

keypoint numbers. 

Table 6. The number of keypoints that feature-based approaches detected 

Model STL-10 images Random 96×96 images 

AKAZE 0.2083±0.6154 0.0648±0.3274 

ORB 1.1181±3.1494 0.8264±2.2073 

SURF 3.9792±3.6926 8.8125±20.0195 

SIFT 7.8125±8.3106 3.3657±3.4143 

The failure rate of feature-based approaches for 96×96 resolution images gets smaller than 

that for small images. However, these approaches are still likely to fail to estimate the 

registration parameters due to insufficient detected feature points. Moreover, the prediction 

errors are still substantial even with sufficient feature points detected. For these successful 

cases, feature-based approaches take 9-20ms to register one image pair. 

The classic FFT approach achieves significantly better accuracy compared to the smaller 

image case and obtains the best registration accuracy among other methods. However, it takes 

more than 11 seconds to register one image pair.  

The registration accuracy of deep regression networks decreases for 96×96 resolution 

images, and the registration time is almost the same as that for 32×32 resolution images. The 

ResNeXt-50 extractor models take about 50ms to register one image pair, and the LSTM 

registration model takes 0.9ms, reducing registration time up to 12,778 folds of the classic 

FFT approach. 

5. Conclusion 

In this paper, we focus on small image registration task where feature-based approaches fail 

due to insufficient feature points detected. We propose different network architectures for 

small image rigid registration and conduct experiments to train and evaluate the regression 

networks with images of two kinds of resolution. For 96×96 resolution images, the classic FFT 

approach can get the most accurate predictions, but it takes several seconds to register one 

image pair. Moreover, for small images of 32×32 resolution, the proposed deep regression 

networks can achieve comparable accuracy to the classic FFT approach with a much faster 

registration speed. Our experiment suggests that deep regression networks provide a 

competitive alternative to other approaches for small image registration, especially when 

image size is petite. 

Future work will focus on arbitrary registration for spatial transformations with fewer 

constraints on the homography matrix, such as affine transformation, projection 

transformation, and transformations on 3D images. 
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